Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

BIO-VOLCANO: Rocks, soils, and bioaccumulators as predictors of volcanic eruptions

Image:
Mt Etna from Reggio Calabria, Italy 10 Feb. 2017

Teaming for Interdisciplinary Research Pre-Seed Program

BIO-VOLCANO: Rocks, soils, and bioaccumulators as predictors of volcanic eruptions

Our interdisciplinary BIOVOLCANO project strives to integrate geological and biological systems to answer critical questions related to volcanic activity. The key challenge for volcanologists is to accurately forecast the likelihood (when?), magnitude (how big?), and style (how?) of volcanic eruptions. This year, for instance, Mt Etna (Italy), the largest volcano in Europe with >1M people living in its shadow, has produced 55 paroxysms with large volumes of volcanic ash and gases. Understanding the causes and consequences of magma unrest, though incredibly challenging, is vital for >800M people living near volcanoes worldwide. Volcanoes are especially large emitters of harmful metals in the environment, such as mercury (Hg), which is highly volatile with >1-year residence time and accumulates in many organisms. There is a positive correlation between volcanic eruption magnitude and Hg in organisms. Mercury is transported by volcanic gases, melt/glass, and minerals, and rapidly accumulates in plants, insects, microbes, and soils. We propose to assemble a unique interdisciplinary team of scientists with diverse expertise in geology, soil science, plant biology, entomology, and microbiology, and with advanced skills in fieldwork in restless volcanic areas, high-resolution analyses, and computational simulations. We aim to determine the relationships between Hg in volcanic rocks, gases, and bioaccumulators and the magnitude of volcanic eruptions to create diagnostic tools for monitoring volcanic activity. With this initiative, we plan to address this central hypothesis: the level and rate of Hg accumulation in volcanic rocks and organisms are positively correlated with the magnitude of volcanic eruptions. To this goal, we will organize round table discussions aimed to design the research work of BIO-VOLCANO: 1) identifying the sites at Mt Etna, which is one of the greatest emitters of Hg in the world (>105 ng/m3), 2) strategizing the collection of samples (volcanic ash, samples of trees, ground beetles, and soil horizons enriched in organic matter and clays hosting biosorbent microbes), 3) planning the analyses with advanced facilities to determine total Hg and methyl-Hg concentrations, 4) processing the data using machine learning algorithms and support vector machines to identify the best predictors of Hg at various spatial and temporal scales, and 5) planning the cohort of undergraduate and graduate students, particularly from underrepresented groups, who will participate in the project. Along with existing techniques monitoring volcanic precursors, results from this project tightly linking biota with geological processes will create a novel set of geo- and bioindicators for predicting the magnitude of volcanic eruptions.

 

Team Lead

Mattia Pistone - Department of Geology

 

Team Members

Caterina Villari - Warnell School of Forestry & Natural Resources

Paul Schroeder - Department of Geology

Brittany Barnes - Warnell School of Forestry & Natural Resources

Kamal Gandhi - Warnell School of Forestry & Natural Resources

Aaron Thompson - Department of Crop and Soil Sciences

Megan DeMarche - Department of Plant Biology

Elizabeth Ottesen - Department of Microbiology

Alexander Cherkinsky - Center for Applied Isotope Studies (CAIS)

Sarah Jantzi - Center for Applied Isotope Studies (CAIS)

Xiaoyu Xu - Savannah River Ecology Laboratory (SREL)

 

The Office of Research, in partnership with the Office of the Provost, provides “pre-seed” funding to facilitate the formation of faculty teams and collaboration around critical areas of research expertise or emerging research topics. The goal is to stimulate large-scale research team formation and position UGA faculty groups to be more competitive in attracting resources for collaborative research, including internal UGA seed grants and ultimately, external grant support.

 

Your gift helps to fund research, travel, and field experience for students and faculty.